Exact Solutions of Low-Dimensional Reaction-Diffusion Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of Low - Dimensional Reaction - Diffusion Systems

We briefly review some common diffusion-limited reactions with emphasis on results for two-species reactions with anisotropic hopping. Our review also covers single-species reactions. The scope is that of providing reference and general discussion rather than details of methods and results. Recent exact results for a two-species model with anisotropic hopping and with ‘sticky’ interaction of li...

متن کامل

Exact solutions of linear reaction-diffusion processes

8 Many processes during embryonic development involve transport and reaction of molecules, 9 or transport and proliferation of cells, within growing tissues. Mathematical models of 10 such processes usually take the form of a reaction–diffusion partial differential equation 11 (PDE) on a growing domain. Previous analyses of such models have mainly involved solv12 ing the PDEs numerically. Here,...

متن کامل

Exact number of solutions of stationary reaction-diffusion equations

We study both existence and the exact number of positive solutions of the problem . All righ . Iturria ðPkÞ k ju0j u0 0 þ f ðuÞ 1⁄4 0 in ð0;1Þ; uð0Þ 1⁄4 uð1Þ 1⁄4 0; <: where k is a positive parameter, p > 1, the nonlinearity f is positive in (0,1), and f ð0Þ 1⁄4 f ð1Þ 1⁄4 0. Assuming that f satisfies the condition lims!1 f ðsÞ ð1 sÞ 1⁄4 x > 0 where h 2 ð0; p 1Þ, we study its behavior near zero,...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

Q-Conditional Symmetries and Exact Solutions of Nonlinear Reaction-Diffusion Systems

A wide range of reaction–diffusion systems with constant diffusivities that are invariant under Q-conditional operators is found. Using the symmetries obtained, the reductions of the corresponding systems to the systems of ODEs are conducted in order to find exact solutions. In particular, the solutions of some reaction–diffusion systems of the Lotka–Volterra type in an explicit form and satisf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modern Physics B

سال: 1997

ISSN: 0217-9792,1793-6578

DOI: 10.1142/s0217979297000137